Of Apples and Oranges: Fair Comparisons in
Heterogenous Systems Evaluation

Hugo Sadok Aurojit Panda Justine Sherry
Carnegie Mellon University New York University Carnegie Mellon University
ABSTRACT Despite the performance improvements offered by these

Accelerators, such as GPUs, SmartNICs and FPGAs, are com-
mon components of research systems today. This paper focuses
on the question of how to fairly compare these systems. This is
challenging because it requires comparing systems that use dif-
ferent hardware, e.g., two systems that use two different types
of accelerators, or comparing a system that uses an accelerator
with one that does not. We argue that fair evaluation in this
case requires reporting not just performance, but also the cost
of competing systems. We discuss what cost metrics should be
used, and propose general principles for incorporating cost in
research evaluations.

CCS CONCEPTS

« Hardware — Emerging technologies; Hardware accelera-
tors; « Networks — Network performance evaluation; .
Software and its engineering — Software performance;

KEYWORDS

Fair Comparison, Accelerator, Heterogenous Hardware

ACM Reference Format:

Hugo Sadok, Aurojit Panda, and Justine Sherry. 2023. Of Apples and
Oranges: Fair Comparisons in Heterogenous Systems Evaluation.
In The 22nd ACM Workshop on Hot Topics in Networks (HotNets °23),
November 28-29, 2023, Cambridge, MA, USA. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3626111.3628186

1 INTRODUCTION

The diminishing improvements in CPU performance over
the last decade have contributed to a proliferation of differ-
ent accelerators that promise better performance for specific
types of applications. As a result, an increasing number of
systems proposed in networking and systems conferences
now incorporate devices such as SmartNICs [16, 20, 22, 25,
27, 30, 32, 33], FPGAs [4, 7, 10, 40, 42], and programmable
switches [14, 15, 18, 24, 38, 39, 41]. With many of these sys-
tems reporting impressive improvements in performance
metrics such as throughput and latency.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

HotNets’23, November 28-29, 2023, Cambridge, Massachusetts

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0415-4/23/11.
https://doi.org/10.1145/3626111.3628186

systems, it is often unclear if the proposed designs are a
“win” over the existing ones. While many such systems are
rigorously evaluated using an evaluation methodology that
tries to be consistent with what the community has been
doing for decades, this traditional methodology breaks when
the underlying hardware changes. Traditionally, the way to
compare two software systems is to run both in the same
hardware device and compare their overall performance ac-
cording to different performance metrics. But when two
systems cannot be run on the same hardware device, looking
only at performance metrics gives us an incomplete picture
that does not account for the changes in cost between the
two systems.

For instance, consider two typical claims found in papers
that use heterogeneous hardware: “We have a system imple-
mented in software; by pushing parts of it to a SmartNIC
this system is now 2X faster” and “The system used to need
4 cores to achieve line rate, but by adding a programmable
switch in front, it now only needs 2” The problem with these
claims is that they only consider performance, even though
the amount of available hardware resources changed. Could
we achieve similar performance improvements by giving the
original system more CPU cores? Why is using an accelerator
any better than these additional cores or other accelerators
that have already been proposed in the literature?

The main principle guiding this paper is that systems
evaluation with heterogeneous hardware should con-
sider, and report, not only performance but also cost.
Our definition of cost is purposefully broad here. Just like
performance can mean different things (e.g., throughput, la-
tency, fairness), cost can refer to money, power, rack space,
number of transistors, etc. In §3 we give a more precise defi-
nition of cost and propose principles that can be followed for
picking good cost metrics depending on the systems being
evaluated.

While the need to consider and report cost is intuitive and
might even seem obvious in retrospect, many papers fail to
properly consider cost in their evaluation. We believe that
this is due to three main reasons:

Lack of standard cost metrics: While there is somewhat
consensus on the main performance metrics that should
be evaluated in a proposed systems (i.e., throughput and
latency)—and even established benchmark methodologies
for measuring these metrics [2]—the same is not true for cost.
As a result, it is often unclear which cost metrics to pick,
how to measure them, and which part of the system should


https://doi.org/10.1145/3626111.3628186
https://doi.org/10.1145/3626111.3628186

HotNets’23, November 28-29, 2023, Cambridge, Massachusetts

be included in the measurement.! Which cost metrics should
one consider in an evaluation with heterogenous hardware?

Cost asymmetry: While performance reproducibility is a
challenge in itself [17], at least we can agree on the value of
different performance metrics given a fixed setup. But cost
metrics are often “asymmetric,” being perceived differently
by different people and organizations, even when measured
for the exact same setup. For example, Total Cost of Owner-
ship (TCO) might be seen as a suitable cost metric, as it can
technically be applied to any system and it is widely used
in industry when purchasing systems. But TCO calculations
can vary dramatically for different entities. Larger compa-
nies have access to lower prices due to the ability to bulk
order. Moreover, the cost of rack space can be significantly
different for a company operating in a big city vs. a company
that operates in a remote rural area, where cost of land is
cheap. How to pick cost metrics that do not suffer from this?

Lack of cost information: Another problem that often pre-
vents researchers from incorporating cost in their evaluation
is that cost information is often not public. Existing systems
commonly do not report cost, making it hard to have a cost
baseline when evaluating a proposed system relative to prior
work. Moreover, companies often purposefully conceal cost
information as a way to hamper competition. Datasheets
can be vague or not publicly available, making it hard to
infer cost for many hardware devices. How can evaluations
measure cost with incomplete information?

In the rest of this paper, we propose principles and method-
ologies to avoid the above issues when evaluating systems
with heterogenous hardware.

2 MOTIVATION

There has long been agreement on what a good evaluation
should aim for: allowing a paper’s readers to compare the
system or design being proposed to other alternatives. While
we have not always—arguably hardly ever—lived up to this
ideal [2, 3, 23, 34], community standards have aimed to pro-
vide common metrics, measurement scenarios, and in some
cases even benchmarks. For example, when evaluating net-
work functions it is common to report both packets per
second when using minimum sized packets and data rates
when using a mixture of packets. Similarly, when building
transactional databases, it is common to use one of the TPC
benchmarks [35] and report transactions-per-second. Across
all areas, it is also accepted practice to report what hardware
and platform was used, and to compare systems running on
the same hardware. This often requires that authors rerun
previous systems on their setup.

Our focus in this paper is to ask how to compare systems
that cannot run on the same hardware, as is the case for
systems that propose new accelerators or propose novel uses

INote that there are application-specific benchmarks that incorporate
cost [28, 31, 36] but our goal is to define a set of principles that can be
broadly applied to different systems.

Hugo Sadok, Aurojit Panda, and Justine Sherry

of existing accelerators. There has been a steady growth in
the number of systems and papers of this type [10, 22, 32,
38, 42], for good reasons: we are unlikely to see significant
clock speed or transistor scaling in the future, energy and
resource efficiency have become more important, and tools
that allow researchers to prototype hardware accelerators
have become accessible to the wider community. However,
evaluating these systems can require comparing to older
systems that run entirely on a CPU or comparing them to
systems that use a different accelerator. Of course, we cannot
require that these comparisons be run on the same hardware,
but we should require “fair” comparisons, i.e., comparisons
that meaningfully reveal trade-offs between systems.

Our core contention in this paper is that current evalu-
ation approaches for accelerator-based systems are failing
the community’s fairness requirements. It is common to con-
clude from an evaluation that shows that system X, when
run on 5 cores and a SmartNIC, has the same performance as
system Y, which took 8 cores, that X is more “efficient” than
Y. While we sometimes hide our discomfort, e.g., by arguing
that SmartNICs should not be considered when evaluating ef-
ficiency, they are cheaper and, unlike cores, cannot be resold
to tenants, but this is a weak argument that is unlikely to
hold in another context. Similarly, it is also common to claim
that a system X, that runs on 8 cores and a SmartNIC, is
superior to another system Y, that only runs on 8 cores, since
X achieves higher throughput than Y. This is despite system
X using strictly more computational resources than Y.

The question we thus focus on is what is a fair way to
compare systems that run on different hardware? Our ob-
servation is that when choosing what system to deploy or
what design to adopt, what we really care about is not just
whether the system has better performance, but also whether
it improves their overall utility. A system’s utility is dictated
by both its cost and its performance, and thus a better sys-
tem design is one that optimizes both cost (by lowering it)
and performance (by improving it). Thus, our prescription
when comparing systems that run on different hardware is
to measure and report both cost and performance, and com-
pare both. However, this simple prescription poses several
challenges: how can one repeatably measure cost, after all,
the price of hardware varies over time, organizations, and
geographic location; and how does one compare normalize
costs and performance across systems fairly. The rest of the
paper addresses these questions.

A potential concern one may have with incorporating
cost in an evaluation is that system prototypes are often
not optimized for cost. Therefore, considering their cost in
the evaluation may be too pessimistic when compared to a
production system. We do not see this as a major roadblock.
The fact that existing prototypes do not optimize for cost is, at
least in part, an artifact of cost not being commonly reported
in evaluations. As such, by encouraging the community to
report cost, we are also encouraging better designs that are
optimized for cost.



Of Apples and Oranges

Before moving on, we acknowledge we are not the first to
consider incorporating cost metrics in an evaluation. Bench-
marks such as JouleSort [28] (which measures performance
and power for sorting), CloudSort [31] (performance and
cloud computing cost for sorting), TPC-Pricing [36] (which
provides a model for computing the cost of different TPC
benchmarks), and computer architecture evaluations focused
on performance-per-watt already incorporate cost into their
measurements. The existence of these benchmarks further
highlights the importance of considering cost when evaluat-
ing systems. This work complements these benchmarks by
describing a methodology that can be broadly applied to a
wide variety of accelerator-based systems.

3 PRINCIPLES FOR CHOOSING COST
METRICS

A variety of metrics can be used to measure costs during
evaluation, including capital expense (often dominated by
hardware costs) [26], power utilization (watts) [11], admin-
istrator complexity [19], total cost of ownership (TCO), and
rack-space [42]. How should systems and network re-
searchers choose between these metrics when evalu-
ating systems? The answer of course depends on what
metrics we can feasibly measure for a system. But, not all
feasibly measurable metrics are equally good, and we ar-
gue that researchers should choose metrics that have three
properties: (a) they should be context-independent (§3.1);
(b) they should be quantifiable (§3.2); and (c) they should
measure end-to-end costs for all systems being compared
(§3.3). Below, we explain these properties, suggesting some
metrics that meet these criteria (§3.4).

Note we do not claim that metrics that do not fit these
criteria are unimportant and should not be used: indeed, as
we will see, TCO, a commonly used metrics for purchasing
decisions, does not meet these criteria. Our message is differ-
ent: it is hard to compare measurements from metrics that
do not meet these criteria, and thus they are not good when
reported in papers but might still be useful in other contexts.

3.1 Context-Independent Costs

One of the issues with cost metrics (that we discussed previ-
ously) is that some metrics can vary depending on deploy-
ment context, i.e., depending on when and where the mea-
surement is taken, and by whom. Total Cost of Ownership
(TCO) is an example of such a context-sensitive metric: the
total cost of a system depends on where it is being deployed
(which dictates energy costs, the cost of maintenance, etc.),
who is deploying it (which dictates purchase cost), and can
vary over time.? Consequently, even though TCO is arguably
the most important cost metric when deciding what system
to buy, it is a poor metric for research, since future researchers
are unlikely to be able to compare against published TCOs.

2TCO’s context dependency is probably at the root of the many heated
debates we have seen about the value of specialized hardware. In particular
when they involve people from companies that calculate TCO differently.

HotNets’23, November 28-29, 2023, Cambridge, Massachusetts

Table 1: Examples of context dependent and indepen-
dent cost metrics. Context-dependent cost metrics can
be calculated differently depending on who is eval-
uating the system and when they are evaluating it.
Context-independent cost metrics avoid this problem.

Cost Metric Type Examples

TCO ($), hardware price ($), car-
bon footprint (COe) [12].

Context Dependent

Context Independent Power (Watt), heat dissipation
(BTU/h), silicon die area (mm?),
number of CPU cores, number of
FPGA LUTSs, memory usage (MB).

To avoid this problem, we propose the following principle:
Principle 1: Cost metrics should be context-independent.

A context-independent cost metric is a metric that yields
identical costs for any two identical deployments of a system.
We define identical deployments to be ones where the system
runs on the same hardware, uses the same configuration, and
processes the same workload. Thus, context-independence
enables comparisons across space, organizations and time,
because the value remains the same, regardless of when it
is measured and by whom. We list common examples of
context-dependent and independent cost metrics in Table 1.

Finally, we note that in conversations with collaborators
and funders, we found that there was some discomfort with
our stance on TCO: while people agreed that TCO is “context-
dependent” they also pointed out that it is “the cost metric
that companies care most about” This led us to ask, can one
find context-independent equivalents to metrics such as TCO,
which are inherently context-dependent? One approach is to
release (with the paper) the pricing model used to compute
the TCO, allowing others to compute TCO for their systems.

3.2 Quantifiable Costs

There are many cost metrics that capture important infor-
mation but we currently have no good tools to measure. For
example, sustainability has generated a lot of interest in the
community [1, 8], and many have suggested using carbon
footprint as a cost metric. However, there is no commonly
agreed upon approach to measure this metric. Similarly, in
software engineering, many are concerned about the addi-
tional programming complexity posed by platforms with
accelerators, since accelerators add concurrency and require
reasoning about interactions between devices with differ-
ent consistency and coherence models. Programming com-
plexity would thus appear to be a reasonable cost metric,
however, there are no agreed upon metrics for measuring
this. While task complexity is a common metric in the social
sciences [5], there is wide-spread disagreement on how to
measure it, and developing a repeatable metric for our field
poses a significant challenge. Other important costs that
are not easily quantifiable include manageability [9, 29] and



HotNets’23, November 28-29, 2023, Cambridge, Massachusetts

velocity [6, 21, 37]. We thus observe, that many important
cost metrics cannot (yet!) be easily quantified or compared,
which leads to our next principle:

Principle 2: Cost metrics should be quantifiable—

measurable and comparable head-to-head.

Of course, this principle does not mean that researchers
should not discuss non-quantifiable cost metrics qualitatively.
We merely suggest that they use this in addition to quan-
tifiable cost metrics.> We also encourage the community to
standardize new metrics that might enable us to compare to-
day’s unquantifiable costs using new, quantifiable, methods.

3.3 End-to-End Cost Coverage

Another concern when picking cost metrics is that many
metrics fail to capture the “full picture” That is, they only
measure cost for a few of the systems being compared, or
they ignore portions of some systems.

For example, suppose we want to compare a system im-
plemented using only a CPU with another that uses both an
FPGA and a CPU. A cost metric such as number of FPGA
lookup tables cannot be used here, as it cannot be measured
for both systems. But even a metric such as number of CPU
cores, which can be measured for both systems, is not suit-
able because it fails to cover all systems in the evaluation
end-to-end, i.e., it does not account for the cost of the FPGA
in one of the systems. The following principle describes this:

Principle 3: Cost metrics should cover all systems in the
evaluation end-to-end.

When we say that a cost metric has end-to-end coverage,
it means that all components of the systems that are needed
to produce the output are captured in the cost.

3.4 Practical Cost Metrics

Finally, having stated the three principles, we discuss how
some commonly reported cost metrics fare on them:

e Power draw (Watts): Unsurprisingly, power meets all
three of our requirements: it is context independent,
measurable using a variety of tools, and can be added
up and composed enabling end-to-end measurements.

e Rack-space or space: Rack-space does well in some
aspects: it is quantifiable (it is just volume), and one can
measure it end-to-end (space can be added up). However,
it is not entirely context-independent. While there are
standard rack-units, the number of devices that can be
enclosed within depends on other concerns such as avail-
able power and cooling, and this makes it challenging.
Thus, additional information must be provided when
using rack-spaces as a context-independent cost metric.

e Number of cores or number of LUTs: These com-
monly reported cost metrics are, of course, context-
independent and quantifiable. However, they are not

3There is an analogous problem for non-quantifiable performance metrics.
For instance, reliability, while important, can be hard to quantify objectively
in some contexts.

Hugo Sadok, Aurojit Panda, and Justine Sherry

\ Better

eNEW

Performance
Performance

Cost Cost
(a) Improving performance. (b) Improving cost.
Figure 1: When systems operate in the same regime,
they either have the same cost or the same perfor-
mance. Comparison in such case is simple, as we only
need to consider one dimension: performance or cost.

always end-to-end: one cannot trivially add up cores or
LUTs on different devices. Therefore, while number of
cores (or LUTs) is a reasonable metric for a system that
uses a single processing device, it does not work when
comparing systems that use accelerators.

We have already discussed other metrics such as TCO and
carbon footprints earlier in the section, and shown that they
do not meet our requirements. In the rest of the paper, we
use power draw as our cost metric, but any cost metric that
meets our three requirements can be substituted instead.

4 EVALUATION PRINCIPLES

A system’s evaluation usually aims to achieve several goals,
including:

e Motivating the system’s design.

e Demonstrating that the system performs well when
executing the targetted workloads in its targeted de-
ployment conditions.

e Showing how the system’s performance varies due to
changes in workloads or deployment conditions.

e Evaluating trade-offs made when designing the sys-
tem.

In all of these cases, it is often desirable to compare the
system to others, using a variety of different types of metrics.

In this section, we describe a methodology for fairly com-
paring systems with heterogeneous hardware, by consid-
ering both performance and cost. Our hope is that such
methodology can be applied systematically in different con-
texts where comparing multiple systems is desirable. For
ease of exposition, our description is framed in terms of com-
parisons between an existing baseline system and a proposed
system that is being evaluated. However, the approach gen-
eralizes when comparing larger numbers of systems, and
under different circumstance. In what follows, we assume
that the cost metric follows the principles in §3.

4.1 Operating Regime
The first step in comparing systems is to determine the per-
formance and cost that these systems achieve. When systems
under the same workload present the same cost or the same
performance, we say that they operate in the same regime.
Comparing systems that operate in the same regime is
simple because we can ignore the dimension that is the same
for both systems. This is often the case when both systems



Of Apples and Oranges

g \ Better ¢~ Comparison Region
g " for System A
g B>Ai 9 Y
S A
& 2 iA-B
Cost

Figure 2: Illustration of the comparison region for a
proposed system A. When a baseline system B is in the
comparison region of system A, it either dominates A
(B > A) or is dominated by A (A > B). Alternatively, no
relation can be inferred between the two systems.

run on the same hardware. For example, if both systems run
on an x86 CPU, saying that “the proposed system improves
throughput with a single core from 10 Gbps to 15 Gbps™ is a
meaningful claim as both systems share the same cost (one
CPU core). Similarly, saying that “the proposed system reduces
the number of cores required to saturate a 100 Gbps link from
8 to 4” is also meaningful since both systems share the same
performance (100 Gbps).

Figure 1 illustrates these two examples in the performance-
cost space. Note how the analysis becomes unidimensional
when both systems operate in the same regime, which lets
us focus on the dimension that changes (either performance
or cost). This notion is captured in the following principle:

Principle 4: When the proposed system and the baseline

operate in the same regime, the analysis can be made unidi-
mensional.

One of the challenges in evaluating systems with hetero-
geneous hardware is that the baseline and the proposed sys-
tems often do not operate in the same regime. For instance,
consider the example of a firewall that uses a SmartNIC, the
system with the SmartNIC is likely to have higher perfor-
mance but also higher cost than the baseline that does not
need a SmartNIC. As we will see next, the analysis in such
case must inevitably consider both performance and cost.

4.2 Scalable Systems and Metrics

When considering both performance and cost it helps to
think of Pareto dominance. A design Pareto dominates an-
other if it improves performance without sacrificing cost or
it improves cost without sacrificing performance. The only
conclusion one can draw from an evaluation that shows that
the system Pareto dominates the baseline is that the system
both improves performance and reduces cost.

When the proposed design does not Pareto dominate the
baseline, or vice versa, we cannot make an objective claim
of superiority. To represent all the possible designs where
such a superiority claim is possible, we define what we call
a comparison region. A comparison region of a given design
comprises all possible designs which Pareto dominate or are
Pareto dominated by such design. Figure 2 illustrates the com-
parison region for a proposed system A in the performance-
cost space. Note how designs that are not Pareto dominated
or dominated by A are outside its comparison region.

HotNets’23, November 28-29, 2023, Cambridge, Massachusetts

g \ Better g \ Better g \ Better

‘g‘ E . [,&e,ul ‘g »’/) :

E Lj E ’.”’ Scaling E ’?”’A ~B
Cost Cost Cost

Figure 3: Example of using ideal scalability to com-
pare two designs: Accelerated (A) and Baseline (B). B
is originally not in A’s comparison region but we can
generously estimate its performance and cost when
operating at A’s comparison region by assuming that
it can scale linearly.

When the baseline system can be horizontally scaled and
when horizontally scaling the system also improves the per-
formance metric, we should be able to scale the baseline to
bring it to the comparison region of the proposed system.
This is stated in the following principle:

Principle 5: Scalable baseline systems should be compared
at the proposed system’s comparison region.

To make Principle 5 more concrete, consider again the
example with the software firewall that is accelerated using
a SmartNIC. Say the baseline system (using a regular NIC)
achieves 10 Gbps and consumes 50 W of power when using
a single CPU core while the proposed system (using a Smart-
NIC) achieves 20 Gbps and consumes 70 W of power. The
baseline system is not in the proposed system’s comparison
region as it has worse performance but better cost.

To compare the two systems, we could scale the baseline
so that it operates in the comparison region of the proposed
system. In the example, we could give the baseline more
CPU cores so that it can achieve a higher throughput. If the
baseline running with two cores achieves 18 Gbps with 80 W,
it is now in the comparison region of the proposed design.
This lets us make an objective claim that the proposed system
is better at this performance-cost target.

4.2.1 Ideal Scalability. One potential challenge in apply-
ing Principle 5 is that, even for scalable systems and metrics,
scaling the baseline system may require substantial effort,
or substantial more hardware, in order to scale horizontally.
In such case, authors proposing the new system can signifi-
cantly simplify the evaluation by assuming ideal scalability.

For example, consider again the accelerated firewall ex-
ample. But now instead of using a SmartNIC we use a pro-
grammable switch to preprocess packets. The accelerated
system can achieve 100 Gbps using all host cores and the
programmable switch, while consuming 200 W. The baseline
system provisioned to use all the host cores achieves 35 Gbps
while consuming 100 W. The baseline system is again out-
side the comparison region of the proposed system but since
we are already using all the host cores, we would need to
provision multiple hosts in order to further scale the baseline.

Instead of trying to scale the baseline across multiple hosts,
we can generously assume that the baseline system will scale
linearly. This gives us a bound on how well the baseline sys-
tem could do were we to use multiple hosts. In the example,



HotNets’23, November 28-29, 2023, Cambridge, Massachusetts

we can linearly scale the baseline until it matches the perfor-
mance or the cost of the proposed system (e.g., 70 Gbps at
200 W or 100 Gbps at 286 W). Figure 3 illustrates this. Note
how, by assuming ideal scalability, we can bring the baseline
to the comparison region without having to actually provi-
sion it at a higher capacity. This is summarized in Principle 6:

Principle 6: When the baseline system and the performance
metric are scalable, consider ideally scaling up the baseline
to the proposed system’s comparison region.

There are a few potential pitfalls that one should be aware
when using ideal scalability. The first is that one can only
assume ideal scalability for the baseline and not for the pro-
posed system, as assuming ideal scalability for the proposed
system is no longer being generous to the baseline. Another
potential pitfall is that one should be careful about the cost
coverage when scaling. If, for instance, the baseline system
originally does not use all CPU cores in the host, linearly
scaling it using the cost of the entire server is no longer
generous, as one could potentially extract more performance
for the same cost by using more cores within the same host.
The last potential pitfall is that not every system or metric is
scalable. We address this last case in the following section.

4.3 Non-Scalable Systems and Metrics

While scalable baseline systems can often be provisioned
to operate in the proposed system’s comparison region, not
every system can be scaled arbitrarily—or at all. This can
be a problem in both directions: upscaling or downscaling.
A proposed system may achieve a performance target that
is not achievable by the baseline system—regardless of how
much we try to scale the baseline. Alternatively, a proposed
system may achieve a cost target that is not achievable by the
baseline system—regardless of how much we try to down-
scale the baseline. In addition, some metrics do not scale
when we scale the system, e.g., la’tency4 and JFI [13].

There are two potential scenarios when dealing with non-
scalable systems and metrics:

Baseline in the comparison region: When the baseline
is already in the proposed system’s comparison region, the
systems are comparable and we can make an objective claim
of superiority. For example, if the proposed system achieves
5 ps latency with 100 W power and the baseline achieves
10 ps latency with 300 W power, the proposed system is ar-
guably superior as it improves both performance and cost.

Baseline not in the comparison region: When the base-
line is not in the proposed system’s comparison region, the
two systems are fundamentally incomparable. For example,
the proposed system may achieve 5 ps latency with 200 W
power while the baseline system achieves 8 us with 100 W
power. In this case, one should still report both performance

4A system response latency for a fixed load might still improve with hor-
izontal scalability, as systems often achieve lower latency at lower loads.
However, there is usually a hard limit on how much one can improve latency
in this way.

Hugo Sadok, Aurojit Panda, and Justine Sherry

and cost for the proposed system. This lets readers decide
if the system’s operating regime fits their requirements. In
addition, reporting performance and cost allows the system
to be used more easily as a baseline when evaluating future
systems, which may be comparable with the proposed one.
Moreover, the authors of the proposed system should make
a case for why achieving such a performance or cost target
is desirable and provide evidence for why the additional cost
or reduction in performance may be justifiable.

Principle 7: Non-scalable baseline systems are only com-
parable when they are originally in the proposed system’s
comparison region.

5 DISCUSSION AND CONCLUSION

This paper lays out a set of evaluation principles for systems
that use accelerators. Our goal is to have these or similar
principles influence how the community evaluates systems:
we hope to drive the community to a place where authors
adhere to these principles when evaluating their systems, and
reviewers consider these principles when reviewing papers.
Of course, we recognize that achieving this goal will require
more than enumerating some principles. We thus hope to
work with the community to develop good cost metrics, build
tools and approaches for measuring them, and evaluating
their utility when designing and comparing systems.

Two additional related questions raised by our principles
are: (a) will industrial research groups be willing to report
cost metrics; and (b) why are the cost metrics that fit our
principles (i.e., metrics that are context-independent, quan-
tifiable, and end-to-end) so different from TCO, which is
used for purchasing decisions? Both questions share the
same cause: cost and pricing information is often confiden-
tial, since it can reveal information about corporate relations
(which affect discounts), salaries, contracts, and thus be a
competitive disadvantage. While our hope is that the benefit
of using cost information to influence system designs will
alleviate some of these concerns, we are not certain of this.

Nevertheless, this is the right time for us as a community
to consider how we want to evaluate and compare systems
with accelerators: these systems are relatively new and our
approach to evaluating and reasoning about them is still in its
early stages, and thus amenable to change. This malleability
is positive, since it allows research to influence what metrics
are exposed by accelerator developers, and considered when
building new systems, whether in academia or industry.

ACKNOWLEDGMENTS

We thank the reviewers for their great feedback, Nirav Atre
for his comments on an earlier draft, and Long Pham for
suggesting the term “Context-Independent Cost.”

This work was supported in part by Intel and VMware
through the Intel/VMware Crossroads 3D-FPGA Academic
Research Center, by a Google Faculty Research Award, and
by ERDF through the COMPETE 2020 program as part of
the project AIDA (POCI-01-0247-FEDER-045907).



Of Apples and Oranges

REFERENCES

(1]
(2]

(10]

(13]

(14]

2023. HotCarbon ’23. https://hotcarbon.org/2023/index.html.

S. Bradner and J. McQuaid. 1999. Benchmarking Methodology for
Network Interconnect Devices. RFC 2544. https://doi.org/10.17487/
RFC2544

Aaron B. Brown, Anupam Chanda, Rik Farrow, Alexandra Fedorova,
Petros Maniatis, and Michael L. Scott. 2005. The Many Faces of Sys-
tems Research: And How to Evaluate Them. In Proceedings of the 10th
Conference on Hot Topics in Operating Systems - Volume 10 (HotOS "05).
USENIX Association, USA, 26.

Marco Spaziani Brunella, Giacomo Belocchi, Marco Bonola, Salva-
tore Pontarelli, Giuseppe Siracusano, Giuseppe Bianchi, Aniello Cam-
marano, Alessandro Palumbo, Luca Petrucci, and Roberto Bifulco. 2020.
hXDP: Efficient Software Packet Processing on FPGA NICs. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI °20). USENIX Association, 973-990.

Donald J Campbell. 1988. Task complexity: A review and analysis.
Academy of management review 13, 1 (1988), 40-52.

Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshu-
man Gupta, Brian Fahs, Dima Rubinstein, Enrique Cauich Zermeno,
Erik Rubow, James Alexander Docauer, Jesse Alpert, Jing Ai, Jon Olson,
Kevin DeCabooter, Marc de Kruijf, Nan Hua, Nathan Lewis, Nikhil
Kasinadhuni, Riccardo Crepaldi, Srinivas Krishnan, Subbaiah Venkata,
Yossi Richter, Uday Naik, and Amin Vahdat. 2018. Andromeda: Perfor-
mance, Isolation, and Velocity at Scale in Cloud Network Virtualization.
In 15th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI ’18). USENIX Association, Renton, WA, 373-387.
Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark Silber-
stein. 2019. NICA: An Infrastructure for Inline Acceleration of Network
Applications. In 2019 USENIX Annual Technical Conference (ATC ’19).
USENIX Association, Renton, WA, 345-362.

Babak Falsafi, Vijay Gadepally, Adam Belay, Carole-Jean Wu, and
Andrew Chien. 2023. Panel on Sustainable Systems. (jun 2023). https:
//sigops.org/s/conferences/hotos/2023/program.html HotOS ’23.
Daniel Firestone. 2017. VFP: A Virtual Switch Platform for Host SDN
in the Public Cloud. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’17). USENIX Association, Boston,
MA, 315-328.

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,
Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh
Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,
Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth
Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018.
Azure Accelerated Networking: SmartNICs in the Public Cloud. In 15th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’18). USENIX Association, Renton, WA, 51-66.

Chang-Hong Hsu, Qingyuan Deng, Jason Mars, and Lingjia Tang.
2018. SmoothOperator: Reducing Power Fragmentation and Improving
Power Utilization in Large-Scale Datacenters. In ASPLOS.

ISO 14067:2018 2018. Greenhouse gases — Carbon footprint of prod-
ucts — Requirements and guidelines for quantification. Standard ISO
14067:2018. International Organization for Standardization, Geneva,
CH. https://www.iso.org/standard/71206.html

Rajendra K Jain, Dah-Ming W Chiu, and William R Hawe. 1984. A
Quantitative Measure of Fairness and Discrimination for Resource Al-
location in Shared Computer Systems. Technical Report DEC-TR-301.
Eastern Research Laboratory, Digital Equipment Corporation, Hudson,
MA.

Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert
Soulé, Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-Free Sub-
RTT Coordination. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’18). USENIX Association, Renton,
WA, 35-49.

HotNets’23, November 28-29, 2023, Cambridge, Massachusetts

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon Kim, Jeongkeun
Lee, Vyas Sekar, and Srinivasan Seshan. 2020. TEA: Enabling State-
Intensive Network Functions on Programmable Switches. In Proceed-
ings of the Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM °20). Association
for Computing Machinery, New York, NY, USA, 90-106.

Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im, Marco Canini,
Dejan Kosti¢, Youngjin Kwon, Simon Peter, and Emmett Witchel. 2021.
LineFS: Efficient SmartNIC Offload of a Distributed File System with
Pipeline Parallelism. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles (SOSP °21). Association for Computing
Machinery, New York, NY, USA, 756-771.

Shriram Krishnamurthi, Margo Seltzer, and Neeraja J. Yadwadkar. 2023.
Panel on Future of Reproduction and Replication of Systems Research.
(jun 2023). https://sigops.org/s/conferences/hotos/2023/program.html
HotOS *23.

Guanyu Li, Menghao Zhang, Cheng Guo, Han Bao, Mingwei Xu,
Hongxin Hu, and Fenghua Li. 2022. IMap: Fast and Scalable In-Network
Scanning with Programmable Switches. In 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI °22). USENIX
Association, Renton, WA, 667-681.

Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao, Sri Tallapra-
gada, Nuno P Lopes, Andrey Rybalchenko, Guohan Lu, and Lihua Yuan.
2017. Crystalnet: Faithfully emulating large production networks. In
SOSP.

Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon
Peter, and Karan Gupta. 2019. Offloading Distributed Applications onto
SmartNICs Using IPipe. In Proceedings of the ACM Special Interest Group
on Data Communication (SIGCOMM ’19). Association for Computing
Machinery, New York, NY, USA, 318-333.

Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,
William C. Evans, Steve Gribble, Nicholas Kidd, Roman Kononov,
Gautam Kumar, Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas Valancius, Xi
Wang, and Amin Vahdat. 2019. Snap: A Microkernel Approach to Host
Networking. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP ’19). Association for Computing Machinery,
New York, NY, USA, 399-413.

YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and
KyoungSoo Park. 2020. AccelTCP: Accelerating Network Applications
with Stateful TCP Offloading. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI "20). USENIX Association,
Santa Clara, CA, 77-92.

John Ousterhout. 2018. Always Measure One Level Deeper. Commun.
ACM 61, 7 (jun 2018), 74-83.

Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang Xu, Yisong
Qiao, Zhiguo Li, Kun Liu, Jie Lu, Jianyuan Lu, Enge Song, Jiao Zhang,
Tao Huang, and Shunmin Zhu. 2021. Sailfish: Accelerating Cloud-Scale
Multi-Tenant Multi-Service Gateways with Programmable Switches.
In Proceedings of the 2021 ACM SIGCOMM 2021 Conference (SIGCOMM
’21). Association for Computing Machinery, New York, NY, USA, 194-
206.

Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann, Si-
mon Peter, Rastislav Bodik, and Thomas Anderson. 2018. Floem: A
Programming System for NIC-Accelerated Network Applications. In
13th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI ’18). USENIX Association, Carlsbad, CA, 663-679.
Lucian Popa, Sylvia Ratnasamy, Gianluca lannaccone, Arvind Krishna-
murthy, and Ion Stoica. 2010. A cost comparison of datacenter network
architectures. In CONEXT.

Yiming Qiu, Jiarong Xing, Kuo-Feng Hsu, Qiao Kang, Ming Liu, Srini-
vas Narayana, and Ang Chen. 2021. Automated SmartNIC Offloading
Insights for Network Functions. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (SOSP °21). Association for
Computing Machinery, New York, NY, USA, 772-787.


https://hotcarbon.org/2023/index.html
https://doi.org/10.17487/RFC2544
https://doi.org/10.17487/RFC2544
https://sigops.org/s/conferences/hotos/2023/program.html
https://sigops.org/s/conferences/hotos/2023/program.html
https://www.iso.org/standard/71206.html
https://sigops.org/s/conferences/hotos/2023/program.html

HotNets’23, November 28-29, 2023, Cambridge, Massachusetts

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

Suzanne Rivoire, Mehul A. Shah, Parthasarathy Ranganathan, and
Christos Kozyrakis. 2007. JouleSort: A Balanced Energy-Efficiency
Benchmark. In Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’07). Association for
Computing Machinery, New York, NY, USA, 365-376.

Hugo Sadok, Zhipeng Zhao, Valerie Choung, Nirav Atre, Daniel S.
Berger, James C. Hoe, Aurojit Panda, and Justine Sherry. 2021. We Need
Kernel Interposition over the Network Dataplane. In Proceedings of the
Workshop on Hot Topics in Operating Systems (HotOS °21). Association
for Computing Machinery, New York, NY, USA, 152-158.

Henry N. Schuh, Weihao Liang, Ming Liu, Jacob Nelson, and Arvind Kr-
ishnamurthy. 2021. Xenic: SmartNIC-accelerated Distributed Transac-
tions. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles (SOSP "21). Association for Computing Machinery,
New York, NY, USA, 740-755.

Mehul A. Shah, Chris Nyberg, and Naga Govindaraju. 2014. CloudSort:
A TCO Sort Benchmark. Technical Report. The SortBenchmark Com-
mittee. https://sortbenchmark.org/2014_06_CloudSort_v_0_4.pdf.
Rajath Shashidhara, Tim Stamler, Antoine Kaufmann, and Simon Peter.
2022. FlexTOE: Flexible TCP Offload with Fine-Grained Parallelism.
In 19th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI "22). USENIX Association, Renton, WA, 87-102.
Giuseppe Siracusano, Salvator Galea, Davide Sanvito, Mohammad
Malekzadeh, Gianni Antichi, Paolo Costa, Hamed Haddadi, and
Roberto Bifulco. 2022. Re-Architecting Traffic Analysis with Neu-
ral Network Interface Cards. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI °22). USENIX Association,
Renton, WA, 513-533.

Vasily Tarasov, Saumitra Bhanage, Erez Zadok, and Margo I Seltzer.
2011. Benchmarking File System Benchmarking: It *IS* Rocket Science..
In HotOS, Vol. 13. 1-5.

TPC. 2023. TPC Benchmarks Overview.
information/benchmarks5.asp.

https://www.tpc.org/

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Hugo Sadok, Aurojit Panda, and Justine Sherry

TPC. 2023. TPC-Pricing Homepage. https://www.tpc.org/pricing/.
William Tu, Yi-Hung Wei, Gianni Antichi, and Ben Pfaff. 2021. Revis-
iting the Open VSwitch Dataplane Ten Years Later. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference (SIGCOMM °21). Association
for Computing Machinery, New York, NY, USA, 245-257.

Tao Wang, Xiangrui Yang, Gianni Antichi, Anirudh Sivaraman, and
Aurojit Panda. 2022. Isolation Mechanisms for High-Speed Packet-
Processing Pipelines. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI °22). USENIX Association, Renton,
WA, 1289-1305.

Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowd-
hury, and Xin Jin. 2020. NetLock: Fast, Centralized Lock Management
Using Programmable Switches. In Proceedings of the Annual Confer-
ence of the ACM Special Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM ’20). Association for Computing Machin-
ery, New York, NY, USA, 126-138.

Chaoliang Zeng, Layong Luo, Qingsong Ning, Yaodong Han, Yuhang
Jiang, Ding Tang, Zilong Wang, Kai Chen, and Chuanxiong Guo. 2022.
FAERY: An FPGA-accelerated Embedding-Based Retrieval System. In
16th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI °22). USENIX Association, Carlsbad, CA, 841-856.
Kaiyuan Zhang, Danyang Zhuo, and Arvind Krishnamurthy. 2020.
Gallium: Automated Software Middlebox Offloading to Programmable
Switches. In Proceedings of the Annual Conference of the ACM Special
Interest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication (SSIGCOMM
’20). Association for Computing Machinery, New York, NY, USA, 283-
295.

Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C. Hoe, Vyas Sekar, and
Justine Sherry. 2020. Achieving 100Gbps Intrusion Prevention on a
Single Server. In 14th USENLX Symposium on Operating Systems Design
and Implementation (OSDI "20). USENIX Association, 1083-1100.


https://sortbenchmark.org/2014_06_CloudSort_v_0_4.pdf
https://www.tpc.org/information/benchmarks5.asp
https://www.tpc.org/information/benchmarks5.asp
https://www.tpc.org/pricing/

	Abstract
	1 Introduction
	2 Motivation
	3 Principles for Choosing Cost Metrics
	3.1 Context-Independent Costs
	3.2 Quantifiable Costs
	3.3 End-to-End Cost Coverage
	3.4 Practical Cost Metrics

	4 Evaluation Principles
	4.1 Operating Regime
	4.2 Scalable Systems and Metrics
	4.3 Non-Scalable Systems and Metrics

	5 Discussion and Conclusion
	Acknowledgments
	References

